Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Immunol ; 15: 1369311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601162

RESUMO

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Assuntos
COVID-19 , Infecções por HIV , Influenza Humana , MicroRNAs , Humanos , Influenza Humana/genética , COVID-19/genética , SARS-CoV-2 , Biologia Computacional , MicroRNAs/genética , Fatores de Transcrição , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
2.
mBio ; 15(4): e0351023, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470053

RESUMO

Remodeling the erythrocyte membrane and skeleton by the malarial parasite Plasmodium falciparum is closely associated with intraerythrocytic development. However, the mechanisms underlying this association remain unclear. In this study, we present evidence that erythrocytic α-spectrin, but not ß-spectrin, was dynamically ubiquitinated and progressively degraded during the intraerythrocytic development of P. falciparum, from the ring to the schizont stage. We further observed an upregulated expression of P. falciparum phosphatidylinositol 3-kinase (PfPI3K) in the infected red blood cells during the intraerythrocytic development of the parasite. The data indicated that PfPI3K phosphorylated and activated erythrocytic ubiquitin-protein ligase, leading to increased α-spectrin ubiquitination and degradation during P. falciparum development. We further revealed that inhibition of the activity of PfPI3K impaired P. falciparum development in vitro and Plasmodium berghei infectivity in mice. These findings collectively unveil an important mechanism of PfPI3K-ubiquitin-mediated degradation of α-spectrin during the intraerythrocytic development of Plasmodium species. Proteins in the PfPI3K regulatory pathway are novel targets for effective treatment of severe malaria. IMPORTANCE: Plasmodium falciparum is the causative agent of severe malaria that causes millions of deaths globally. The parasite invades human red blood cells and induces a cascade of alterations in erythrocytes for development and proliferation. Remodeling the host erythrocytic cytoskeleton is a necessary process during parasitization, but its regulatory mechanisms remain to be elucidated. In this study, we observed that erythrocytic α-spectrin is selectively degraded after P. falciparum invasion, while ß-spectrin remained intact. We found that the α-spectrin chain was profoundly ubiquitinated by E3 ubiquitin ligase and degraded by the 26S proteasome. E3 ubiquitin ligase activity was regulated by P. falciparum phosphatidylinositol 3-kinase (PfPI3K) signaling. Additionally, blocking the PfPI3K-ubiquitin-proteasome pathway in P. falciparum-infected red blood cells reduced parasite proliferation and infectivity. This study deepens our understanding of the regulatory mechanisms of host and malarial parasite interactions and paves the way for the exploration of novel antimalarial drugs.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Animais , Camundongos , Plasmodium falciparum/metabolismo , Espectrina/metabolismo , Espectrina/farmacologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Ubiquitina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
J Immunother Cancer ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302417

RESUMO

BACKGROUND: Although immune checkpoint inhibitor (ICI)-based therapy is advantageous for patients with advanced melanoma, resistance and relapse are frequent. Thus, it is crucial to identify effective drug combinations and develop new therapies for the treatment of melanoma. SGN1, a genetically modified Salmonella typhimurium species that causes the targeted deprivation of methionine in tumor tissues, is currently under investigation in clinical trials. However, the inhibitory effect of SGN1 on melanoma and the benefits of SGN1 in combination with ICIs remain largely unexplored. Therefore, this study aims to investigate the antitumor potential of SGN1, and its ability to enhance the efficacy of antibody-based programmed cell death-ligand 1 (PD-L1) inhibitors in the treatment of murine melanoma. METHODS: The antitumor activity of SGN1 and the effect of SGN1 on the efficacy of PD-L1 inhibitors was studied through murine melanoma models. Further, The Cancer Genome Atlas-melanoma cohort was clustered using ConsensusClusterPlus based on the methionine deprivation-related genes, and immune characterization was performed using xCell, Microenvironment Cell Populations-counter, Estimation of Stromal and Immune cells in MAlignant Tumor tissues using Expression data, and immunophenoscore (IPS) analyses. The messenger RNA data on programmed death-1 (PD-1) immunotherapy response were obtained from the Gene Expression Omnibus database. Gene Set Enrichment Analysis of methionine deprivation-up gene set was performed to determine the differences between pretreatment responders and non-responders. RESULTS: This study showed that both, the intratumoral and the intravenous administration of SGN1 in subcutaneous B16-F10 melanomas, suppress tumor growth, which was associated with an activated CD8+T-cell response in the tumor microenvironment. Combination therapy of SGN1 with systemic anti-PD-L1 therapy resulted in better antitumor activity than the individual monotherapies, respectively, and the high therapeutic efficacy of the combination was associated with an increase in the systemic level of tumor-specific CD8+ T cells. Two clusters consisting of methionine deprivation-related genes were identified. Patients in cluster 2 had higher expression of methionine_deprivation_up genes, better clinical outcomes, and higher immune infiltration levels compared with patients in cluster 1. Western blot, IPS analysis, and immunotherapy cohort study revealed that methionine deficiency may show a better response to ICI therapy CONCLUSIONS:: This study reports Salmonella-based SGN1 as a potent anticancer agent against melanoma, and lays the groundwork for the potential synergistic effect of ICIs and SGN1 brought about by improving the immune microenvironment in melanomas.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma Experimental , Humanos , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Metionina , Estudos de Coortes , Recidiva Local de Neoplasia , Melanoma Experimental/tratamento farmacológico , Salmonella , Microambiente Tumoral
4.
Food Chem X ; 21: 101032, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235343

RESUMO

Numerous health hazards have been connected to advanced glycation end products (AGEs). In this investigation, using reaction models including BSA-fructose, BSA- methylglyoxal (MGO), and BSA-glyoxal (GO), we examined the anti-glycation potential of eight different berry species on AGEs formation. Our results indicate that black chokeberry (Aronia melanocarpa) exhibited the highest inhibitory effects, with IC50 values of 0.35 ± 0.02, 0.45 ± 0.03, and 0.48 ± 0.11 mg/mL, respectively. Furthermore, our findings suggest that black chokeberry inhibits AGE formation by binding to BSA, which alleviates the conformation alteration, prevents protein cross-linking, and traps reactive α-dicarbonyls to form adducts. Notably, three major polyphenols, including cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, and procyanidin B2 from black chokeberry, showed remarkably inhibitory effect on MGO/GO capture, and new adducts formation was verified through LC-MS/MS analysis. In summary, our research provides a theoretical basis for the use of berries, particularly black chokeberry, as natural functional food components with potential anti-glycation effects.

5.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 218-222, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063092

RESUMO

Resveratrol (Res) is a polyphenolic compound that exhibits a diverse array of biological effects. Herein, we detected the ability of Res on murine granulosa cells (GCs) against impaired steroidogenesis and apoptotic death in response to high glucose levels. Ovarian GCs were harvested from C57BL/6 mice and cultured in steroidogenic media supplemented with follicle-stimulating hormone (FSH, 30 ng/mL), Res (50 µmol/L), and low or high glucose concentrations (5 mM or 30 mM). After culture for 24 h, cell supernatants were harvested and the levels of progesterone and estradiol therein were measured. Also, caspase-3 activity and the expression of genes associated with apoptosis and steroidogenesis were assessed. High-glucose treatment suppressed steroidogenesis in this assay system, resulting in the impaired expression of steroidogenesis-related genes including Cyp11a1, Cyp19a1, 3ßHSD, and StAR and a concomitant decrease in progesterone and estradiol production. Cells exposed to high glucose also exhibited apoptotic phenotypes characterized by Bax upregulation, Bcl-2 downregulation, and increased caspase-3 activity levels. However, Res treatment was sufficient to reverse this high glucose level-induced apoptotic and steroidogenic phenotypes with improving progesterone and estradiol production, and these maybe related the effects of Res on Cyp11a1, Cyp19a1, 3ßHSD, and StAR expressions. These data suggested that Res is well suited to overcoming the negative effects of hyperglycemia of GC functionality.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Progesterona , Feminino , Camundongos , Animais , Progesterona/farmacologia , Resveratrol/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Caspase 3/metabolismo , Camundongos Endogâmicos C57BL , Estradiol/farmacologia , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Apoptose , Glucose/metabolismo , Células Cultivadas
6.
World J Gastroenterol ; 29(20): 3103-3118, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37346154

RESUMO

BACKGROUND: The transforming growth factor ß (TGFß) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFß type II receptor (TGFßR2), followed by the recruitment of TGFßR1 finally triggering downstream signaling pathway. AIM: To find drugs targeting TGFßR2 that inhibit TGFßR1/TGFßR2 complex formation, theoretically inhibit TGFß signaling pathway, and thereby ameliorate liver fibrosis. METHODS: Food and Drug Administration-approved drugs were screened for binding affinity with TGFßR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8 (CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect. RESULTS: We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine (DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFß induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFßR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFßR2 disrupted the binding of TGFßR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson's trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver. CONCLUSION: DHE alleviates liver fibrosis by binding to TGFßR2 thereby suppressing TGFß signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.


Assuntos
Di-Hidroergotamina , Cirrose Hepática , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II , Di-Hidroergotamina/efeitos adversos , Simulação de Acoplamento Molecular , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Cirrose Hepática/induzido quimicamente , Fibrose , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Receptores de Fatores de Crescimento Transformadores beta/genética
7.
J Psychosoc Nurs Ment Health Serv ; 61(12): 47-54, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37379122

RESUMO

The current study aimed to explore the status and influencing factors of professional identity among psychiatric nurses as second victims in China by using a cross-sectional design. We investigated 291 psychiatric nurses from two psychiatric hospitals. Participants were asked to complete a demographic questionnaire, Second Victim Experience and Support Scale, Multidimensional Health Locus of Control Scale, and Professional Identity Scale for Nurses. Scores of professional identity of psychiatric nurses as second victims were moderate. Regression analysis showed that the second victim experience and support and internal control were significant predictors, explaining 34.2% of the variance in professional identity. Identifying risk factors related to the professional identity of psychiatric nurses as second victims will help managers take timely preventive measures to improve the awareness of the self-health responsibility of psychiatric nurses and reduce the adverse effects of patient safety incidents to enhance their professional identity. [Journal of Psychosocial Nursing and Mental Health Services, 61(12), 47-54.].


Assuntos
Enfermeiras e Enfermeiros , Enfermagem Psiquiátrica , Humanos , Estudos Transversais , Inquéritos e Questionários , China , Segurança do Paciente
8.
Opt Express ; 31(11): 18613-18629, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381570

RESUMO

The accelerating development of high-throughput plant phenotyping demands a LiDAR system to achieve spectral point cloud, which will significantly improve the accuracy and efficiency of segmentation based on its intrinsic fusion of spectral and spatial data. Meanwhile, a relatively longer detection range is required for platforms e.g., unmanned aerial vehicles (UAV) and poles. Towards the aims above, what we believe to be, a novel multispectral fluorescence LiDAR, featuring compact volume, light weight, and low cost, has been proposed and designed. A 405 nm laser diode was employed to excite the fluorescence of plants, and the point cloud attached with both the elastic and inelastic signal intensities that was obtained through the R-, G-, B-channels of a color image sensor. A new position retrieval method has been developed to evaluate far field echo signals, from which the spectral point cloud can be obtained. Experiments were designed to validate the spectral/spatial accuracy and the segmentation performance. It has been found out that the values obtained through the R-, G-, B-channels are consistent with the emission spectrum measured by a spectrometer, achieving a maximum R2 of 0.97. The theoretical spatial resolution can reach up to 47 mm and 0.7 mm in the x- and y-direction at a distance of around 30 m, respectively. The values of recall, precision, and F score for the segmentation of the fluorescence point cloud were all beyond 0.97. Besides, a field test has been carried out on plants at a distance of about 26 m, which further demonstrated that the multispectral fluorescence data can significantly facilitate the segmentation process in a complex scene. These promising results prove that the proposed multispectral fluorescence LiDAR has great potential in applications of digital forestry inventory and intelligent agriculture.

9.
Microbiol Spectr ; 11(3): e0429422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039510

RESUMO

Alcohol is an essential drug in human life with multiple medical functions, but excessive alcohol intake, even a single episode of binge drinking, can cause serious damage. Reducing alcohol consumption or absorption is a direct way to alleviate the related harm. Alcohol is decomposed successively by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver. Here, we produced a human ADH1B (hADH1B)-expressing probiotic, a recombinant Lactococcus lactis, that aimed to enhance alcohol degradation in the intestinal tract after oral administration. Our results showed that the oral hADH1B-expressing probiotic reduced alcohol absorption, prolonged the alcohol tolerance time, and shortened the recovery time after acute alcohol challenge. More importantly, the liver and intestine were protected from acute injury caused by alcohol challenge. Therefore, the engineered probiotic has the potential to protect organ damage from alcohol consumption. Furthermore, this engineered probiotic may have beneficial effects on alcohol-related diseases such as alcoholic fatty liver disease. IMPORTANCE Alcohol plays an important role in medical treatment, culture, and social interaction. However, excessive alcohol consumption or improper alcohol intake patterns can lead to serious damage to health. Aiming to reduce the harm of alcohol consumption, we designed a recombinant probiotic expressing hADH1B. Our results showed that this recombinant probiotic can reduce alcohol absorption and protect the body from alcohol damage, including hangover, liver, and intestinal damage. Reducing alcohol damage is helpful to the health of people with difficulty in abstinence. The engineered probiotic may provide new strategies for treatment and prevention of the negative effects of alcohol, and it also has the potential for widespread application.


Assuntos
Etanol , Probióticos , Humanos , Camundongos , Animais , Etanol/metabolismo , Consumo de Bebidas Alcoólicas , Fígado/metabolismo , Álcool Desidrogenase/genética , Probióticos/uso terapêutico
10.
Free Radic Biol Med ; 201: 14-25, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36906190

RESUMO

Cisplatin is a chemotherapy medication used to treat a wide range of cancers. A common side effect of cisplatin is myelosuppression. Research suggests that oxidative damages are strongly and consistently related to myelosuppression during cisplatin treatment. ω-3 polyunsaturated fatty acids (PUFAs) can enhance the antioxidant capacity of cells. Herein, we investigated the protective benefit of endogenous ω-3 PUFAs on cisplatin-induced myelosuppression and the underlying signaling pathways using a transgenic mfat-1 mouse model. The expression of mfat-1 gene can increase endogenous levels of ω-3 PUFAs by enzymatically converting ω-6 PUFAs. Cisplatin treatment reduced peripheral blood cells and bone marrow nucleated cells, induced DNA damage, increased the production of reactive oxygen species, and activated p53-mediated apoptosis in bone marrow (BM) cells of wild-type mice. In the transgenics, the elevated tissue ω-3 PUFAs rendered a robust preventative effect on these cisplatin-induced damages. Importantly, we identified that the activation of NRF2 by ω-3 PUFAs could trigger an antioxidant response and inhibit p53-mediated apoptosis by increasing the expression of MDM2 in BM cells. Thus, endogenous ω-3 PUFAs enrichment can strongly prevent cisplatin-induced myelosuppression by inhibiting oxidative damage and regulating the NRF2-MDM2-p53 signaling pathway. Elevation of tissue ω-3 PUFAs may represent a promising treatment strategy to prevent the side effects of cisplatin.


Assuntos
Cisplatino , Ácidos Graxos Ômega-3 , Camundongos , Animais , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antioxidantes/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Camundongos Transgênicos , Transdução de Sinais
11.
Psychophysiology ; 60(4): e14207, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322605

RESUMO

The framing effect refers to the phenomenon that different descriptions of the same option lead to a shift in the choice of the decision maker. Several studies have found that emotional contexts irrelevant to a decision in progress still influence the framing effect on decision making. However, little is known about the potential role of emotional contexts in the framing effect on outcome evaluation under uncertainty and the related neural mechanisms. The present study measured event-related potentials (ERPs) to capture the time series of brain activities during the processing of gain- and loss-framed choices and outcomes primed with neutral and negative emotional contexts. The results revealed that in the neutral emotional context, the P300 amplitudes following both positive and negative feedback were greater in the gain-framed condition than those in the loss-framed condition, demonstrating a framing effect, whereas in the negative emotional context, this effect was unstable and observed only following negative feedback. In contrast, regardless of whether the feedback was positive or negative, the framing effect on the feedback-related negativity (FRN) amplitudes was insensitive to neutral and negative emotional contexts. Furthermore, the time-frequency analysis showed that the framing effect on the theta power related to the FRN was also insensitive to neutral and negative emotional contexts. Our findings suggest that brain responses to framing effects on outcome evaluation in a later cognitive appraisal stage of decision making under uncertainty may depend on the emotional context, as the effects were observed only following negative feedback in the negative emotional context.


Assuntos
Tomada de Decisões , Emoções , Humanos , Incerteza , Tomada de Decisões/fisiologia , Emoções/fisiologia , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Eletroencefalografia
12.
Front Neurosci ; 16: 1062095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507321

RESUMO

Introduction: Advice-giving is a double-edged sword in social interaction, which could bring benefits or considerable losses for the advisee. However, whether the social relationship affects the time course of advisor's brain response to outcome evaluation after the advice-giving remains unclear. Methods: In the present study, we used event-related potentials (ERPs) to investigate the modulation of social relationships on advisor's outcome feedback processing after the advice-giving and related neural activities. Results: The results showed larger feedback-related negativity (FRN) to a loss than to a gain both when the friends accepted and rejected the advice, whereas this effect only existed when the strangers rejected the advice, but not when they accepted it. In contrast, the P3 results demonstrated the enhanced neural sensitivity when the strangers accepted the advice than rejected it despite leading to a loss, while a larger P3 amplitude was found when the friends accepted the advice than rejected it and brought a gain. The theta oscillation results in the friend group revealed stronger theta power to loss when the advisee accepted the advice than rejected it. However, this effect was absent in the stranger group. Discussion: These results suggested that outcome evaluation in advice-giving was not only influenced by feedback valence and social reward, but also modulated by social relationships. Our findings contributed to the understanding of the neural mechanisms of advice-giving outcome evaluation in a social context.

13.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36256464

RESUMO

Pancreatic ductal adenocarcinoma (PDA) remains resistant to immune therapies, largely owing to robustly fibrotic and immunosuppressive tumor microenvironments. It has been postulated that excessive accumulation of immunosuppressive myeloid cells influences immunotherapy resistance, and recent studies targeting macrophages in combination with checkpoint blockade have demonstrated promising preclinical results. Yet our understanding of tumor-associated macrophage (TAM) function, complexity, and diversity in PDA remains limited. Our analysis reveals significant macrophage heterogeneity, with bone marrow-derived monocytes serving as the primary source for immunosuppressive TAMs. These cells also serve as a primary source of TNF-α, which suppresses expression of the alarmin IL-33 in carcinoma cells. Deletion of Ccr2 in genetically engineered mice decreased monocyte recruitment, resulting in profoundly decreased TNF-α and increased IL-33 expression, decreased metastasis, and increased survival. Moreover, intervention studies targeting CCR2 with a new orthosteric inhibitor (CCX598) rendered PDA susceptible to checkpoint blockade, resulting in reduced metastatic burden and increased survival. Our data indicate that this shift in antitumor immunity is influenced by increased levels of IL-33, which increases dendritic cell and cytotoxic T cell activity. These data demonstrate that interventions to disrupt infiltration of immunosuppressive macrophages, or their signaling, have the potential to overcome barriers to effective immunotherapeutics for PDA.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-33/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
14.
Front Physiol ; 13: 950619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051914

RESUMO

The intermittent fasting regimen (IFR) has been certified as an effective strategy for improving metabolism. But the underlying mechanism is still obscure. Beige induction in white adipose tissue (WAT) by IFR may account for this. It has been demonstrated that the erupting of pregnancy zone protein (PZP) from the liver coincides with membrane translocation of grp78 in brown adipocytes during IFR to activate brown adipose tissue (BAT), which may partly explain the metabolic benefits of IFR. Liver-derived PZP appears to be responsible for all metabolic regulatory functions; the effect of boosting energy expenditure disappeared in liver-deficient mice. To verify whether any liver-specific modification was essential for functional PZP, we used the PZP adipose tissue-specific overexpression mice model (PZP TG). We found that the metabolic disorders induced by high-fat diet were improved in PZP TG mice under IFR. Additionally, in addition to the activation of BAT, UCP1 protein and angiogenesis were increased in WAT, as well as the expression of genes associated with glucose utilization. These results demonstrate that PZP fat-specific TG increased the energy conversion of WAT, indicating that WAT may be another direct target for PZP during IFR.

15.
Br J Pharmacol ; 179(18): 4563-4574, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751868

RESUMO

BACKGROUND AND PURPOSE: Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disease affecting women of reproductive age. Due to its complex aetiology, there is no currently effective cure for PCOS. Brown adipose tissue (BAT) activity is significantly decreased in PCOS patients, and BAT activation has beneficial effects in animal models of PCOS. Here, we investigated the effect of ginsenoside compound K (CK) in an animal model of PCOS and its mechanism of BAT activation. EXPERIMENTAL APPROACH: Primary brown adipocytes, Db/Db mice and dehydroepiandrosterone (DHEA)-induced PCOS rats were used. The core body temperature, oxygen consumption, energy metabolism related gene and protein expression were assessed to identify the effect of CK on overall energy metabolism. Oestrous cycle, serum sex hormone, ovarian steroidogenic enzyme gene expression and ovarian morphology were also evaluated following CK treatment. KEY RESULTS: Our results indicated that CK treatment could significantly protect against body weight gain in Db/Db mice via BAT activation. Furthermore, we found that CK treatment could normalize hyperandrogenism, oestrous cyclicity, normalize steroidogenic enzyme expression and decrease the number of cystic follicles in PCOS rats. Interestingly, as a potential endocrine intermediate, C-X-C motif chemokine ligand-14 protein (CXCL14) was significantly up-regulated following CK administration. In addition, exogenous CXC14 supplementation was found to reverse DHEA-induced PCOS in a phenotypically similar manner to CK treatment. CONCLUSION AND IMPLICATIONS: In summary, CK treatment significantly activates BAT, increases CXCL14 expression and ameliorates PCOS. These findings suggest that CK might be a potential drug candidate for PCOS treatment.


Assuntos
Ginsenosídeos , Síndrome do Ovário Policístico , Tecido Adiposo Marrom/metabolismo , Animais , Desidroepiandrosterona/efeitos adversos , Modelos Animais de Doenças , Feminino , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Camundongos , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Ratos
16.
Front Vet Sci ; 9: 904667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711808

RESUMO

A fruit juice production byproduct, Aronia melanocarpa pomace (AMP) is rich in natural polyphenol antioxidant components. The objectives of this study were to study the effects of dietary AMP supplementation on the feeding outcome and intestinal barrier function of pigs. In total, 27 growing pigs (Duroc × Landrace × Yorkshire, ~60 days, average weight of 27.77 ± 2.87 kg, males and females included at random) were randomly allotted to 3 treatment groups, with 3 repetitions per group and 3 pigs per repetition. At the experiment completion, 2 pigs (close to the average body weight of all experimental pigs) per replicate were slaughtered. The control group (CON group) was fed a basic diet, and the experimental groups were fed 4% (4% AMP group) and 8% (8% AMP group) AMP in the basic diet. These pigs were prefed for 3 days, and the formal experiments were performed for 7 weeks. The results showed that compared with the CON diet, the 4% AMP supplementation significantly increased the average daily gain of pigs (P < 0.05). Regarding intestinal development, 4% AMP significantly increased the jejunal villus height/crypt depth ratio (P < 0.05), and different AMP levels had no significant effect on the pig cecum morphology. Different AMP levels significantly decreased the relative abundance of Proteobacteria (P < 0.05). Regarding other microbial genera, 4% AMP supplementation significantly increased the levels of Lachnospira, Solobacterium, Romboutsia and other beneficial microorganisms (P < 0.05). Different AMP levels significantly decreased the relative abundances of the opportunistic pathogens Escherichia-Shigella and Pseudoscardovia (P < 0.05) and increased the contents of acetic acid and butyric acid in the pig cecal contents (P < 0.05). Compared with the CON treatment, 4% AMP supplementation significantly downregulated the jejunal gene expression of porcine proinflammatory factors (IL-1ß, IL-6, IL-8 and TNF-α) and significantly upregulated the jejunal gene expression of ZO-1, Occludin and Claudin-1 (P < 0.05). In conclusion, 4% AMP supplementation in feed is beneficial to overall pig health and growth.

17.
Am J Physiol Endocrinol Metab ; 323(1): E69-E79, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35575231

RESUMO

Brown adipose tissue (BAT) is the primary site of adaptive thermogenesis, which is involved in energy expenditure and has received much attention in the field of obesity treatment. By screening a small-molecule compound library of drugs approved by the Food and Drug Administration, pantothenic acid was identified as being able to significantly upregulate the expression of uncoupling protein 1 (UCP1), a key thermogenic protein found in BAT. Pantothenate (PA) treatment decreased adiposity, reversed hepatic steatosis, and improved glucose homeostasis by increasing energy expenditure in C57BL/6J mice fed a high-fat diet. PA also significantly increased BAT activity and induced beige adipocytes formation. Mechanistically, the beneficial effects were mediated by UCP1 because PA treatment was unable to ameliorate obesity in UCP1 knockout mice. In conclusion, we identified PA as an effective BAT activator that can prevent obesity and may represent a promising strategy for the clinical treatment of obesity and related metabolic diseases.NEW & NOTEWORTHY PA treatment effectively and safely protected against obesity via the BAT-UCP1 axis. PA has therapeutic potential for treating obesity and type II diabetes.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus Tipo 2 , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
Therap Adv Gastroenterol ; 15: 17562848221087536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574427

RESUMO

Background: The association of endoscopic variceal treatment (EVT) with portal venous system thrombosis (PVST) in liver cirrhosis is still unclear. Methods: PVST was assessed by contrast-enhanced CT or MRI in 406 cirrhotic patients from our prospective database. Case and control groups, which are defined as patients with and without PVST, respectively, were matched at a ratio of 1:1 according to age, gender, Child-Pugh class, and MELD score. History of EVT was reviewed. Logistic regression analysis was used to identify the risk factors for PVST. Odds ratios (ORs) were calculated. Subgroup analyses were further performed in terms of degree and location of PVST. Results: Overall, 109 patients each were included in case and control groups. The case group had a significantly higher proportion of patients who had undergone EVT than the control group (53.2% versus 18.3%; p < 0.001). In detail, the case group had significantly higher proportions of patients who had undergone EVT for controlling bleeding (45.9% versus 14.7%; p < 0.001), endoscopic variceal ligation (EVL) alone (19.3% versus 9.2%; p = 0.033), and EVL combined with endoscopic cyanoacrylate glue injection (24.8% versus 5.5%; p < 0.001). EVT was independently associated with PVST (OR = 4.258; p < 0.001). In subgroup analyses, EVT remained independently associated with partial PVST (OR = 10.063; p < 0.001), complete PVST/fibrotic cord (OR = 4.889; p = 0.008), thrombosis within main portal vein (OR = 5.985; p < 0.001), and thrombosis within superior mesenteric and splenic veins (OR = 5.747; p < 0.001). Conclusions: EVT may lead to a higher risk of PVST, especially more severe PVST, in liver cirrhosis. Screening for and prophylaxis of PVST after EVT should be further explored.

19.
Toxins (Basel) ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35324708

RESUMO

Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is one of the most prevalent contaminants in livestock feed and causes very large losses to animal husbandry every year. Taraxasterol, isolated from Taraxacum officinale, has anti-inflammatory, antioxidative stress, and antitumor effects. In the present study, bovine mammary epithelial cells (MAC-T) were used as a model, and different concentrations of taraxasterol (0, 1, 5, 10, and 20 µg/mL) were used to protect against DON-induced cell damage. The results showed that taraxasterol at a concentration of 10 µg/mL significantly increased cell viability. Analysis of lactate dehydrogenase (LDH) levels indicated that taraxasterol substantially decreased LDH release caused by DON. Taraxasterol effectively alleviated the depletion of glutathione (GSH), the increase in the lipid peroxidation of malondialdehyde (MDA), the reduction in total superoxide dismutase (T-SOD) activity, and the decrease in total antioxidant capacity (T-AOC) induced by DON. The results further showed that taraxasterol reduced the accumulation of reactive oxygen species (ROS). Taraxasterol was found to relieve endoplasmic reticulum (ER) stress by suppressing the expression of glucose-regulated protein 78 kDa (GRP78), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4) and the transcription factor C/EBP homologous protein (CHOP), and reducing cell apoptosis by suppressing the expression of caspase-3 and Bcl2-associated X (BAX) and upregulating the expression of the antiapoptotic protein B-cell lymphoma-2 (Bcl-2). Our research results indicate that taraxasterol could alleviate DON-induced damage to MAC-T cells.


Assuntos
Tricotecenos , Triterpenos , Animais , Apoptose , Bovinos , Estresse do Retículo Endoplasmático , Células Epiteliais , Glutationa/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Esteróis , Tricotecenos/metabolismo , Triterpenos/farmacologia
20.
PLoS One ; 17(3): e0265069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294478

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is reported as an aggressive cancer which leads to high mortality and no effective therapeutic target has yet been discovered. Surgical resection is the main method to treat patients with CCA. However, only one-third of CCA patients have the opportunity to accept the operation, leading to poor prognosis for CCA patients. Therefore, it is necessary to search for new therapeutic targets of CCA or core genes involved in the happening and growth of CCA. AIM: In this study, we utilized bioinformatics technology and accessed to several medical databases trying to find the core genes of CCA for the purpose of intervening CCA through figuring out an effective curative target. METHODS: Firstly, three differentially expressed genes (DEGs) were discovered from GEPIA, and by further observing the distribution and gene expression, CHST4 was obtained as the core gene. Afterwards, correlated genes of CHST4 in CCA were identified using UALCAN to construct a gene expression profile. We obtained PPI network by Search Tool for the Retrieval of Interacting Networks Genes (STRING) and screened core genes using cytoscape software. Functional enrichment analyses were carried out and the expression of CHST in human tissues and tumors was observed. Finally, a CCA model was established for qPCR and staining validation. RESULTS: Three differentially expressed genes (DEGs), CHST4, MBOAT4 and RP11-525K10.3, were obtained. All were more over-expressed in CCA samples than the normal, among which the change multiple and the gene expression difference of CHST4 was the most obvious. Therefore, CHST4 was selected as the core gene. We can see in our established protein-protein interaction (PPI) network that CHST4 had the highest degree of connectivity, demonstrating its close association with CCA. We found that genes were mainly enriched in CCs in the PPI networks genes which shows functional enrichment analysis results, including golgi lumen, extracellular space and extracellular region. CHST4 was found very specifically expressed in the bile duct and was significantly different from that in normal tissues. The overexpression of CHST4 was further verified in the established animal model of TAA-induced CCA in rats. Quantitative PCR (qPCR) demonstrated that CHST4 was significantly overexpressed in tumor tissues, verifying the role of CHST4 as the core gene of CCA. CONCLUSION: CHST4 was increasingly expressed in CCA and CHST4 is worth being studied much further in the intervention of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/genética , Colangiocarcinoma/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA